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4. Rationale:  
Heart failure (HF) affects African-Americans (AA) at substantially higher rates than other ethnic group [1]. 
The race/ethnic disparities in HF incidence and outcomes are particularly notable among adults < 50 
years [2,3]. Prior studies have utilized multivariable-adjusted Cox proportional hazard (CPH) models to 
evaluate the association between clinical phenotypes and HF incidence. However, CPH has numerous 
limitations including high variance and poor performance (Breiman), correction for multiple testing and 
handling of multicollinearity, and linear assumptions between factors [4-6]. Machine learning algorithms, 
however, can automatically reconstruct relationships between variables and response values from big 
data and can provide an efficient method of improving the performance of traditional proportional hazard 
models in identifying critical predictors[7]. Among them, Random Survival Forests (RSF) have shown 
increased interest for identifying important variables related to outcome without the need for P values[8]. 
Moreover, RSF do not impose a restrictive structure on how the variables should be combined [9]. An 
increasing number of studies have shown that many of the covariates were excluded from the CPH model 
analysis due to their violation of the proportional hazard assumption[10]. RSF were recommended as 
alternative methods for the study as it allows for consideration of more complex exposure/outcome 
relationships. Therefore, we aim to predict heart failure incidence using RSF in a large population-based 
cohort of AA using data from the Jackson heart study and then validate the risk prediction model in the 
non-Jackson cohort of AA in the ARIC study. 
 
5. Main Hypothesis/Study Questions: 
Aim 1: We aim to predict heart failure incidence using RSF in a large clinical cohort of AA. We 
hypothesize that advanced machine learning techniques, like RSF, are superior to the CPH method for 
determining variable selection and survival probability.  
 
Aim 2: We aim to validate the risk prediction model developed in the Jackson Heart Study in the non-
Jackson AA population of the ARIC cohort and compare the calibration and discrimination performance of 
the machine learning based model with that of well-established HF risk scores such as Health ABC risk 
score, ARIC clinical HF risk score, and ARIC biomarker HF risk score. We hypothesize that the machine 
learning based HF risk prediction model will have better discrimination and calibration performance than 
the other traditional Cox-PH based risk prediction models. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present) 
 
Study design:  
Prospective cohort study 
 
Inclusion criteria:  

• All participants 
 
Exclusion criteria:  

• Participants with existing HF at baseline or un-adjudicated HF events between baseline to 2005 
• Patients with missing data on heart failure diagnosis or exacerbation 
 

Primary predictor variables of interest: 
• All variables including demographic characteristics (Age, sex, education, annual income), 

baseline medical history (history of diabetes, hypertension, anti-hypertensive use, smoking, 
history of MI, CVD, dialysis use, blood pressure medications, statin use), anthropometric 
measures (body weight, height, waist circumference), physical activity levels, lab data (LDL, HDL, 
A1c, Serum Creatinine/eGFR, BNP, troponin, CRP),  and Echocardiographic parameters.  



• These parameters of interest will be harmonized across the two cohorts. We have harmonized 
the data from JHS and ARIC for pooling in a separate project that we are involved with evaluating 
the impact of obesity parameters on pooled cohort equation performance in a multi cohort pooled 
analysis using JHS and ARIC data (PI: Ian Neeland/Rohan Khera at UT Southwestern, Dallas) 
 

Outcomes:  
Incident HF events  
 
Data analysis:  

• A predictive model will be developed to evaluate the association of multiple demographic, clinical, 
laboratory, and EKG/echocardiographic predictors and heart failure. The JHS dataset will be 
divided randomly into 80% training and 20% testing/validation. A random survival forest (RSF) 
model will be initially trained for predicting heart failure using a binned variable approach. Missing 
values will be imputed using the missForest R package. A random forest will be generated by 
creating 1000 trees.  

• Variable selection will be calculated by two distinct methods – VIMP and Minimum Depth. 
Variable importance (VIMP) is calculated by first randomly permuting predictor variable values. 
VIMP is then defined as the difference between the prediction error of the observed and randomly 
permuted variables. A large VIMP suggests that misspecification worsens the predictive accuracy 
in the forest. Conversely, a low VIMP suggests noise is more informative than the observed 
variable. Therefore, we will ignore variables with negative or near zero VIMP values as they do 
not indicate that the predictive accuracy of the model is dependent on these variables. Second, 
minimum depth (MD) is calculated by recording and averaging the distance from the trunk of the 
tree (root node) across all trees in the forest. It is assumed that variables with high importance or 
impact on the prediction are nearest the root node. Therefore, lower values (ie, closer to the root 
of the tree) suggest higher importance in splitting the large group of patients and has a larger 
impact on the model prediction. 

• As discussed previously, we will divide the predictor variables into three distinct hierarchical bins 
– Demographic/Clinical, Laboratory, and EKG/Echocardiographic. Starting with the 
Demographic/Clinical variables, we will use all the available associated visit 1 data and change in 
values between visit 1 and visit 2 to predict heart failure survival outcomes. Among all 
demographic and clinical variables, we will remove the predictors with a negative VIMP and those 
below the MD threshold with the remaining variables called Bin 1. We will add laboratory 
variables and repeat the process to obtain Bin 2, again removing variables with low importance. 
Finally, the process will be repeated a third time by adding echocardiographic data to Bin 2 to 
obtain Bin 3. 

• The final predictive model will be retrained using the significant variables found in the prior 
analysis on all JHS data with the hyper-tuned parameters obtained in the testing/validation 
dataset. The trained model will be tested using data from the Atherosclerosis Risk in 
Communities (ARIC) study. For this, variables in the the ARIC and JHS study will be harmonized 
The participants from the Jackson county area that are included in both JHS and ARIC will be 
excluded from the validation cohort. The RSF model will be compared to the standard Cox 
proportional hazard model using the variables selected in the prior analysis, AIC Cox model with 
forward selection, and LASSO-Cox with top 20 RSF variables. Prediction accuracy will be 
assessed by calculating a Harrell C-index using out-of-bag (OOB) data. A total of 1000 OOB 
bootstrap samples from the original dataset will be used to compute a prediction model and 
calculate the C-index. 

• The calibration and net-reclassification index will also be compared between the machine 
learning and Cox models in the ARIC cohort. 

• The model will also be compared with the well-established Health ABC risk score [11] and ARIC 
HF risk score[12] with respect to the calibration, discrimination, and net-reclassification index in 
predicting HF events in the JHS and ARIC cohorts. 
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Table 1:  General characteristics of the African American participants in JHS and ARIC cohorts 
 
 

Baseline Characteristics 
(harmonized for the two 

cohorts) 

JHS cohort ARIC cohort 
(excluding JHS participants) 

   

   

   

   

   

   

 
 
Table 2: The top 20 ranked variables by the importance on the Random survival forest method for incident 
heart failure in JHS 
 

 Rank Variable 

  

  

  

  

  

  

  

 
 
 
 
Table 3: Performance C-statistic for Random survival forest model and Cox models for predicting heart 
failure in the derivation cohort and validation cohort. 
 



Performance measure Derivation cohort 
(JHS) 

Validation cohort  
(ARIC) 

RSF with top-20 covariates   

standard Cox proportional 
hazard model using the top 
20 RSF variables  

  

AIC Cox model with 
forward selection 

  

LASSO-Cox with top 20 
RSF variables 

  

AIC Cox backward 
selection model with top 20 
RSF variables 

  

 
 
 
 
Table 4: Comparison of the O/E and C-statistic for the Random survival forest model vs. the previously 
published HF risk prediction models in the ARIC cohort 
 

Risk Prediction model C-statistic O/E NRI 

RSF model from JHS    

Health ABC model     

ARIC HF risk prediction model  
(Agarwal, et al Circ HF) 

   

ARIC HF risk prediction model wth 
biomarkers (Nambi et al. Clinical Chem) 

   

AIC Cox backward selection model with top 
20 RSF variables 
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